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Importance of a new approach of classifying tibia plateau fractures  

The tibia plateau is the head of the larger bone (tibia) of the 

lower leg and therefore, directly below the bone femur, as 

shown in image 1. Hence, tibia plateau fractures are breaks at 

the top of the tibia bone (see image 1). Those fractures are 

usually complex and involve also other parts of the knee as 

for example the joint surface, surrounding nerves, the 

meniscal and vascular injuries. Treatment needs to be planned 

carefully as it has major impact on the patients’ walking 

abilities and future quality of life. In the literature, there are 

38 different classification systems that describe this specific 

type of fracture (Schröter and Schreiner, 2020). However, 

one recently introduced by Krause et al. (2016) is 

increasingly used for images specifically from computed 

tomography (CT) and will be used in this project. This 

concept is called “ten-segment-classification” and divides the 

tibia plateau into multiple segments (Krause et al., 2016), 

which is shown in image 2. There are a total of 10 segments: 

ALL, ALC, AC, AMC, AMM, PLL, PLC, PC, PMC and 

PMM which meanings are described in table 1.  
Table 1 Abbreviations and their meanings of the ten-segment-classification (Korthaus et al., 2020) 

Abbreviation Meaning 
AMM	 antero-medio-medial 
AMC		 antero-medio-central	
PMM		 postero-medial-medial	
PMC		 postero-medial-central	
AC		 antero-central	
PC		 postero-central	
ALL		 antero-latero-lateral	
ALC		 antero-latero-central	
PLL		 postero-latero-lateral	
PLC		 postero-latero-central	

 
Usually and especially those fractures which are in need of a surgery, do not show a break in 

one of the ten segments, but a minimum of two, and sometimes even an occurrence in all of 

them. For example, image 3 shows fractures in following segments: ALL, ALC, PLL, PLC, 

PC, PMC and PMM.  

Image 1 Location of tibia plateau (Schröter 
and Schreiner, 2020), modified by Ahrend, 
F.  

Image 2 Ten-segment-classification for tibia 
plateau fractures at a right knee (Schröter 
and Schreiner, 2020), meaning of 
abbreviations: table 1 
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Data collection and description 

I was fortune and am thankful to have received different types of 

computed tomography (CT) images and associated analyzed data that 

were condensed by Dr. Marc-Daniel Ahrend, MD. 

Even though I got various attributes in the data, for this final project I had 

to limit those for the data mining process. From the axial, frontal and 3D 

images of totally 398 fractures, I chose the axial view (see example in 

image 3) for further analysis due to possibly most valuable conclusions 

for hospitals and patients’ planning of treatments. Apart from the images 

which related to unique IDs, an excel-sheet provided information about the specific fractures. 

Here, information such as age, gender, days of present fracture until first surgery, knee side 

and the type of fracture were listed associated with the ID and four different classification 

models. For this final project, I chose the previously introduced “ten-segment-classification” 

by Krause et. al (2016).  

Topic selection  

Even though the first idea of simply detecting if a fracture in x-rays is present or not, this plan 

changed due to the kind of data that I received: The original idea of x-ray images that do not 

necessarily show fractures, turned to CT images, that are usually only taken when a fracture is 

already detected, and the decision of operational procedures is already made. With those kinds 

of images, a differentiation of fracture/no-fracture is not feasible or meaningful. Therefore, the 

analysis of the fractures of the earlier discussed classification for planning surgeries was tried 

for this final class project. Hence, the goal is to classify the axial images with the “ten-segment-

classification” by Krause et. al (2016) with implementing different data mining techniques, 

which are closely discussed in the next section.  

Used data mining techniques 

The term “data mining” summarizes techniques for detecting patterns in raw data, Therefore, 

it has the function to produce interpretable results. This relatively broad term includes, among 

others, data cleaning and preparation, data warehousing, classifications, and machine learning, 

which will be all used or at least in detail discussed during this project. This project is my very 

first project working with images instead of data in form of strings and integers, therefore I am 

relatively new to this field. Hence, I used as a starting point for the actual implementation of a 

multi-label image classification, the steps from a documentation by Pulkit Sharma on Analytics 

Vidhya (Sharma, 2019). However, the further I proceed in this project, the more I modified and 

experienced with parameters to improve the model.  

Image 3 Axial view of tibia 
plateau fracture 
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Data storing 

I have spent quite some time considering how to best store the received data as good data 

storage is essential for fast and efficient data processing. Originally, I started to implement 

connecting my JupyterNotebook with MySQLWorkbench (see notes-section of code-

submission) with the goal of later (this was before I received the data) loading the images and 

other data into this relational database management system. However, with learning about 

different database structures to store and process data in my “Advance Database Concepts”-

class, I was trying to find the best storing system for this particular project, which should not 

only fit with the current amount of available data, but also after possibly implementing the 

visions for this project in the future (more images, other types of images, e.g., frontal; more 

detailed description in the discussion of this paper). This gets increasingly important with 

bigger sizes and a greater amount of data. Data warehouses are specific databases that are 

designed specifically for centralizing the already cleaned data for an improved analysis. With 

some resulting difficulties and with the background of the number of available data, I decided 

to store the images in a folder with the corresponding ID and “.png” as a name so that the 

access through JupyterNotebook is simplified and faster which made the focus on other data 

mining techniques possible and to better results with the limited time. 

However, especially with a bigger dataset my current grown knowledge in database concept 

would suggest using a NoSQL database, in specific a document database since it handles large 

volumes and sizes of data faster and is also more flexible and scalable. Also with the received 

data, the relational component of SQL is not necessary. MongoDB could be one example for 

such document databases and is great in its compatibility with Python and has its advantage in 

being an open-source and free platform (Walters, 2017). 

Data cleaning and pre-processing 

While working on this project a lot of data cleaning and pre-processing needed to be done. This 

step can be separated in input (x) and output (y), in which the input represents the images, and 

the output represents the classifications. All steps were implemented with Python 3 in the web-

based interactive development environment (IDE) JupyterNotebook.  

As it was my first time processing images with Python, my first step was iterating through the 

folder. Due to the lack of data when I started the project, I executed my code at first with just 

two images for testing purposes. The iterating through the folder was implemented with the os-

module which allows interactions with the operating system. I was able to convert the images 

into an array and display those, both, in a matrix and as an image (see image 4a). Furthermore, 

I reviewed the dimensions (shape) of the images and were able to conclude that the images do 
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not all have the same height and width and need to be adjusted accordingly. Also, the text in 

the corners needs to be removed to receive the ROI (region of interest).   

As shown in image 4b, a rectangle helped me to find suiting coordinates for cropping the 

images’ corners. By experimenting with different numbers and reviewing the provided 

coordinate system on the sides of the graphics, finding those locations with remaining as much 

tissue around the bones the CT-images was successful, and the images were cropped (image 

4c).  

 

As to this point not all images were present yet, this cropping was first implemented as a test, 

however, later implemented for all roughly 400 images within the pre-processing step.  

The next step was to work with the classifications which were given in a .csv-file. This file 

was loaded into JupyterNotebook and represented further in a data frame. As it initially 

contained of many empty rows and columns, the first step was to remove those. As the images 

and the classifications are indirectly connected by identification numbers (id), they needed to 

be equally. For this purpose, the dots (and in rare cases commas) needed to be removed in the 

data frame. After those steps and generally cleaned data, I saved the table into a new csv-file 

for having the option of using the complete data for future research purposes.  

Finally, I removed all columns but the ones with the id and the specific ten-segment 

classification and created ten new columns which represents each segment separately. If a 

segment is listed in the complete classification, the row shows in the specific column the 

Image 4 Cropping of two CT-images to remove text in corners; a) original image with covered text, b) 
rectangle in green to determine cropping location, c) cropped image 
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number one, otherwise the number zero. This new table with the complete output-data was 

again saved in a separate csv-file.  

After those steps, all images are in one folder and are for the following steps able to be 

connected with the classifications from the table and are therefore prepared for a first test 

session with just 35 images. This step was performed when I did not have all data yet. The 

steps performed in this part follow the same pattern like with the whole data set, so I will skip 

the detailed explanation here.  

Before working with all images and corresponding classifications, a control of equal shapes 

was performed: Matrix with images is of shape 397 items, 287 height, 334 width with each 3 

colors and matrix with classifications is of shape 397 items and 10 classifications.  

After this checkpoint, the data was splitted into a training and validation data set, which is the 

standard procedure for machine learning procedures. 

Multi-label image classification & Model’s architecture 

I decided to use multi-label image classification which is not to be mistaken with multi-class 

image classification. Here, the main difference is that we speak about multi-class image 

classification when just one object exists in the picture which needs to be classified to one of 

many categories. However, multi-label image classification shows more than one object or 

classification and therefore need to be assigned to multiple categories. Regarding the calculated 

probabilities for classifications, multi-class image classifications have probabilities that are 

dependent from each other, as when one probability rises the probability of other classes 

decreases. In the case of multi-label image classification are those outputs independent from 

each other, as more than one result can be correct. When considering the tibia plateau fractures 

with the classification from Krause et al. (2016), there is also not just one of the ten segments 

the solutions but a combination of those. For this purpose, I started using the sigmoid activation 

function as a n-binary classification model which can calculate the probability of each label 

individually and independently by creating as many models and corresponding probabilities as 

there are classes. To improve the accuracy of this model, the goal is to reduce the 

binary_crossentropy loss as much as possible (Sharma, 2019).  

Those parameters were implemented within the TensorFlow 2 library which has the purpose 

of developing and training Machine Learning models (Abadi et al., 2016). In specific the Keras 

deep learning API was used which is a model inspired by biological neural networks of 

humans‘ or other animals‘ brains (Chollet et al., 2015).  

There are different parameters which can be included and modified within the model’s 

architecture, so for example the number of hidden layers, neurons for each layer or the type of 
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activation function. In table 2 (appendix) a selected list and explanations of different elements 

is provided. I used different parameters for compiling the model for which there are two 

parameters necessary: optimizer and loss function. Also, when fitting or training the model I 

experienced widely with different architecture structures. To give an example: The batch size 

for training the model is the number of used training examples per epoch. In which one single 

epoch is one forward and one backward pass of the number of training examples determined 

by the batch_size. Whereas smaller numbers here have the advantage of running much faster 

and require less memory space. In contrast higher numbers tend to be more accurate in training 

performance (Karimanzira et al., 2020). This pattern can be seen in image 5: Karimanzira et al. 

(2020) analyzed the learning rate outcome of their specific dataset, with different sizes of batch 

(batch = full batch gradient, mini-batch = smaller batch, stochastic = batch size of 1).  

 
Image 5 Batch sizes in comparison (Karimanzira et al., 2020) 

I used that information to better understand the general influence of the batch size on the model 

and tested different numeric values for this purpose. I also was able to see differences in 

performances depending on the batch size and decided to choose a batch size of 64.  

Results 

When performing the training of the epochs, the training and testing performance’s accuracy 

and validated accuracy are computed. Those were not as high as hoped, as they were at about 

10% for both types of accuracies with some overfitting towards the training data which is 

shown by the graph in the code-submission which compares the loss and the validated loss in 

comparison for each epoch. However, when looking how the results are measured, those low 

numbers can be explained: We receive per segment of the classification a percentage and all of 

those 10 segments’ likelihoods are adding up to 1 (or 100%). Hence, it does not indicate the 

specific classification prediction but instead rather gives an indication in which region the 
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fracture probably lays. An example is shown in image 6, in which one can compare the 

predictions made by the machine learning model and the actual classification made by a doctor: 

We can see that in this specific example the segments with higher percentages are indeed higher 

in latero-regions which can be confirmed by the actual result. 

 

 
Image 6 One computed prediction from validation set; a) image of fracture, b) model’s prediction of 
classification, c) actual classification performed by medical doctor 

Improving the results  

After receiving the first results of this project, my goal was to improve this model in its 

performance. Part of those thoughts were related to the model’s architecture, but I also 

implemented different modifications on the data itself: Due to the images’ grayscale-colors, I 

figured it is unnecessary to use three colors (RGB) so that I converted the images from three to 

one layer per image. Furthermore, and more importantly for the performance of the model, I 

added information from the originally provided table, in specific the note about in which knee 

the fracture appeared. As left and right knees are mirrored, the classifications are also mirrored. 

Hence, my solution for this issue was to flip images of the left knee (in data frame noted with 

‘li’ which stands for ‘links’/left), so that for example the classification ALL is always on the 

upper left corner of the knee and not just on the right knee and otherwise on the upper right 

corner. I figured that this additional consideration with the given data could improve the model.  

With this modification of the input data, I was able to increase the training’s accuracy by more 

than 5%; however, the validation accuracy and loss resulting from the results of the testing (or 

validation data set) was not improved.  

F1 Score 

After my supervisor’s suggestion of including a so-called f1 score in my model, I directly tried 

to implement it. The F1 score is a parameter for statistical analysis for specifically binary 

classifications and performs a measurement of accuracy of the test and includes true positives 

as well as false positives and negatives in its formula. It shows the harmonic mean of both, 

precision, and recall. The result of this score after applying it, was unfortunately zero (not 

a) b) c) 
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exactly zero though due to problem with dividing by zero) for both the training and validation 

dataset.  

Discussion  

During this project, I realized different points in which it could be improved with the goal of 

increasing the performance. There are different topics that might have made it difficult for the 

machine learning algorithm to properly identify pattern within those images. In many cases the 

whole leg was not present in the cropped image, which might influence the range of learning 

from swelling in soft tissue. Furthermore, some images had a blue line crossing the CT image 

which is originally used for doctors to make notes or mark specific areas. However, I believe 

the two biggest problems with the images were the quantity of data as well as the location of 

the cut. On the one hand, the quantity of the image that were in total at roughly 400 images 

might just not be enough. There exist different techniques to reduce the negative impact on a 

lack of data, which however will be discussed later together with the other main problem of 

the data. On the other hand, if the axial image cut was performed at a location superior (higher) 

or inferior (lower) than the actual location of the fracture(s), then a correct classification might 

even be impossible. In many cases, personally, I was not able to confirm the classification made 

by the doctor just by analyzing the axial images and had to take the anterior images to hand. 

As those images are also available to me, taking both those images for analyzation might 

already improve the learning rate of the model significantly. If the goal of achieving 

classifications just by the axial images remains, then acquiring multiple axial cuts from those 

knees could enhance the classification performance. Those could be additionally a solution for 

the low quantity of the data as it results to more images with axial view. Combined with this 

also synthetic data could be generated by techniques like the Synthetic Minority Over-sampling 

Technique (SMOTE) to generate modifications of the real data (Gonfalonieri).  

Even though, I have read and experimented already a lot on the 

model’s architecture, I believe it could still be improved in some 

ways due to the high quantity of possible combinations of 

different parameters. Also, I would like to optimize the 

integration of the F1 score in the results’ outputs so that I receive 

more information regarding the precision and recall of the 

model.   

As I am planning to work a couple of more weeks on this project, 

I will first take some simpler classification model to hand, such 

as the one by Luo et al. (2010) which is shown in image 7. Due 
Image 7 Three-column fixation (Luo et 
al., 2010) 
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to just three classes instead of the ten of Krause et al. (2016), I hope to enhance the accuracy 

of the model by reducing issues of overfitting and regain new information about possible 

enhancement options with the available data.  

It would be great to eventually automate classifications of tibia plateau fractures with machine 

learning models and connect those results with advice how to perform the surgery. Combined 

with this goal, it could also relax the doctor’s daily work to execute an automated medical 

summary and surgery report. For this, not only the image classification model needs to be 

enhanced in its accuracy, but also software needs to be written to create a user-friendly interface 

for entering new CT images. It would be ideal to get feedback from the doctor if the 

classification was successful or where mistakes could be, so that the classification model can 

be further trained. This however can only be implemented if (I) the accuracy is optimized, (II) 

patient data security is ensured, and (III) interactions between doctor and software is 

guaranteed to prevent wrong interpretations and evaluations (Ghassemi et al., 2020).  
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Appendix 
Table 2 List of selected elements of model's architecture and parameters for the implemented machine 
learning model 

Keras deep learning API, implementing biological neuronal networks 
TensorFlow2 Library for developing and training machine learning models  
train_test_split Separates full dataset (with input data x and output data y) to training 

and validation set: X_train, X_test, y_train, y_test 
Parameters are, among others:  

- x and y as input and output, respectively 
- random_state=42 à random separation 
- test_size: size of the validation/test dataset 

Sequential()-Model Model = Sequential, one layer to the next, not drawback 
Conv2D Small window of kernel_size moving over the images: each one of 

them new Neuronal Network à Categorizations 
filter Number of windows 
kernel_size Size of window (x-/y-cordinates: pixels) 
activation Parameter for after performing the convolution to 

determine which neurons to activate and which not to  
MaxPooling2D Layer that brings together (pools) to Neural Network both in  

pool_size Window size with height and width (tuple) 
Dropout Against overfitting, downsamples the input  
Flatten To 1D array  
Dense Reduces number of nodes in layer 
Optimizers Changes attributes to reduce losses, attributes can be weights or 

learning rates, required argument for compiling the model, 
instantiation either by initializing it beforehand or by its string 
identifier within the model.compile()  
adam Stochastic gradient descent method: adaptive 

estimation  
Advantage among others in little memory requirement  

SGD Gradient descent optimizer, iterative method for 
optimization with smoothness properties  

loss Function for compiling that regulates the quantity to minimize the 
data while training 
Binary 
crossentropy 

probabilistic losses between true labels and predicted 
labels, for binary (0/1) classification  

categorical 
crossentropy 

probabilistic losses between labels and predictions, 
for two or more label classes  

epochs one forward and one backward pass of the number of training 
examples determined by the batch_size 

Batch size number of used training examples per epoch 
Val_accuracy Accuracy from validation/testing dataset 
Accuracy  Accuracy from training dataset 
Loss Value of loss-function resulting from the training dataset  
Val_loss Value of loss-function resulting from the validation dataset  

 


