

Classification of Tibia Plateau Fractures

with Artificial Intelligence

Final Adv. Artificial Intelligence Project

Franziska-Marie Ahrend
Supervised by Dr. Long Ma

Department of Computer Science
CS 6678-Advanced Artificial Intelligence

Dr. Long Ma / Troy University

Troy, April 2022

Franziska Ahrend Classification of Tibia Plateau Fractures 04/25/22

 2

Importance of a new approach of classifying tibia plateau fractures

The tibia plateau is the head of the larger bone (tibia) of the

lower leg and therefore, directly below the bone femur, as

shown in image 1. Hence, tibia plateau fractures are breaks at

the top of the tibia bone (see image 1). Those fractures are

usually complex and involve also other parts of the knee as

for example the joint surface, surrounding nerves, the

meniscal and vascular injuries. Treatment needs to be planned

carefully as it has major impact on the patients’ walking

abilities and future quality of life. In the literature, there are

38 different classification systems that describe this specific

type of fracture (Schröter and Schreiner, 2020). However,

one recently introduced by Krause et al. (2016) is

increasingly used for images specifically from computed

tomography (CT) and will be used in this project. This

concept is called “ten-segment-classification” and divides the

tibia plateau into multiple segments (Krause et al., 2016),

which is shown in image 2. There are a total of 10 segments:

ALL, ALC, AC, AMC, AMM, PLL, PLC, PC, PMC and

PMM which meanings are described in table 1.
Table 1 Abbreviations and their meanings of the ten-segment-classification (Korthaus et al., 2020)

Abbreviation Meaning
AMM	 antero-medio-medial
AMC		 antero-medio-central	
PMM		 postero-medial-medial	
PMC		 postero-medial-central	
AC		 antero-central	
PC		 postero-central	
ALL		 antero-latero-lateral	
ALC		 antero-latero-central	
PLL		 postero-latero-lateral	
PLC		 postero-latero-central	

Usually and especially those fractures which are in need of a surgery, do not show a break in

one of the ten segments, but a minimum of two, and sometimes even an occurrence in all of

them. For example, image 3 shows fractures in following segments: ALL, ALC, PLL, PLC,

PC, PMC and PMM.

Image 1 Location of tibia plateau (Schröter
and Schreiner, 2020), modified by Ahrend,
F.

Image 2 Ten-segment-classification for tibia
plateau fractures at a right knee (Schröter
and Schreiner, 2020), meaning of
abbreviations: table 1

Franziska Ahrend Classification of Tibia Plateau Fractures 04/25/22

 3

Data collection and description

I was fortune and am thankful to have received different types of

computed tomography (CT) images and associated analyzed data that

were condensed by Dr. Marc-Daniel Ahrend, MD.

Even though I got various attributes in the data, for this final project I had

to limit those for the data mining process. From the axial, frontal and 3D

images of totally 398 fractures, I chose the axial view (see example in

image 3) for further analysis due to possibly most valuable conclusions

for hospitals and patients’ planning of treatments. Apart from the images

which related to unique IDs, an excel-sheet provided information about the specific fractures.

Here, information such as age, gender, days of present fracture until first surgery, knee side

and the type of fracture were listed associated with the ID and four different classification

models. For this final project, I chose the previously introduced “ten-segment-classification”

by Krause et. al (2016).

Topic selection

Even though the first idea of simply detecting if a fracture in x-rays is present or not, this plan

changed due to the kind of data that I received: The original idea of x-ray images that do not

necessarily show fractures, turned to CT images, that are usually only taken when a fracture is

already detected, and the decision of operational procedures is already made. With those kinds

of images, a differentiation of fracture/no-fracture is not feasible or meaningful. Therefore, the

analysis of the fractures of the earlier discussed classification for planning surgeries was tried

for this final class project. Hence, the goal is to classify the axial images with the “ten-segment-

classification” by Krause et. al (2016) with implementing different data mining techniques,

which are closely discussed in the next section.

Used data mining techniques

The term “data mining” summarizes techniques for detecting patterns in raw data, Therefore,

it has the function to produce interpretable results. This relatively broad term includes, among

others, data cleaning and preparation, data warehousing, classifications, and machine learning,

which will be all used or at least in detail discussed during this project. This project is my very

first project working with images instead of data in form of strings and integers, therefore I am

relatively new to this field. Hence, I used as a starting point for the actual implementation of a

multi-label image classification, the steps from a documentation by Pulkit Sharma on Analytics

Vidhya (Sharma, 2019). However, the further I proceed in this project, the more I modified and

experienced with parameters to improve the model.

Image 3 Axial view of tibia
plateau fracture

Franziska Ahrend Classification of Tibia Plateau Fractures 04/25/22

 4

Data storing

I have spent quite some time considering how to best store the received data as good data

storage is essential for fast and efficient data processing. Originally, I started to implement

connecting my JupyterNotebook with MySQLWorkbench (see notes-section of code-

submission) with the goal of later (this was before I received the data) loading the images and

other data into this relational database management system. However, with learning about

different database structures to store and process data in my “Advance Database Concepts”-

class, I was trying to find the best storing system for this particular project, which should not

only fit with the current amount of available data, but also after possibly implementing the

visions for this project in the future (more images, other types of images, e.g., frontal; more

detailed description in the discussion of this paper). This gets increasingly important with

bigger sizes and a greater amount of data. Data warehouses are specific databases that are

designed specifically for centralizing the already cleaned data for an improved analysis. With

some resulting difficulties and with the background of the number of available data, I decided

to store the images in a folder with the corresponding ID and “.png” as a name so that the

access through JupyterNotebook is simplified and faster which made the focus on other data

mining techniques possible and to better results with the limited time.

However, especially with a bigger dataset my current grown knowledge in database concept

would suggest using a NoSQL database, in specific a document database since it handles large

volumes and sizes of data faster and is also more flexible and scalable. Also with the received

data, the relational component of SQL is not necessary. MongoDB could be one example for

such document databases and is great in its compatibility with Python and has its advantage in

being an open-source and free platform (Walters, 2017).

Data cleaning and pre-processing

While working on this project a lot of data cleaning and pre-processing needed to be done. This

step can be separated in input (x) and output (y), in which the input represents the images, and

the output represents the classifications. All steps were implemented with Python 3 in the web-

based interactive development environment (IDE) JupyterNotebook.

As it was my first time processing images with Python, my first step was iterating through the

folder. Due to the lack of data when I started the project, I executed my code at first with just

two images for testing purposes. The iterating through the folder was implemented with the os-

module which allows interactions with the operating system. I was able to convert the images

into an array and display those, both, in a matrix and as an image (see image 4a). Furthermore,

I reviewed the dimensions (shape) of the images and were able to conclude that the images do

Franziska Ahrend Classification of Tibia Plateau Fractures 04/25/22

 5

not all have the same height and width and need to be adjusted accordingly. Also, the text in

the corners needs to be removed to receive the ROI (region of interest).

As shown in image 4b, a rectangle helped me to find suiting coordinates for cropping the

images’ corners. By experimenting with different numbers and reviewing the provided

coordinate system on the sides of the graphics, finding those locations with remaining as much

tissue around the bones the CT-images was successful, and the images were cropped (image

4c).

As to this point not all images were present yet, this cropping was first implemented as a test,

however, later implemented for all roughly 400 images within the pre-processing step.

The next step was to work with the classifications which were given in a .csv-file. This file

was loaded into JupyterNotebook and represented further in a data frame. As it initially

contained of many empty rows and columns, the first step was to remove those. As the images

and the classifications are indirectly connected by identification numbers (id), they needed to

be equally. For this purpose, the dots (and in rare cases commas) needed to be removed in the

data frame. After those steps and generally cleaned data, I saved the table into a new csv-file

for having the option of using the complete data for future research purposes.

Finally, I removed all columns but the ones with the id and the specific ten-segment

classification and created ten new columns which represents each segment separately. If a

segment is listed in the complete classification, the row shows in the specific column the

Image 4 Cropping of two CT-images to remove text in corners; a) original image with covered text, b)
rectangle in green to determine cropping location, c) cropped image

Franziska Ahrend Classification of Tibia Plateau Fractures 04/25/22

 6

number one, otherwise the number zero. This new table with the complete output-data was

again saved in a separate csv-file.

After those steps, all images are in one folder and are for the following steps able to be

connected with the classifications from the table and are therefore prepared for a first test

session with just 35 images. This step was performed when I did not have all data yet. The

steps performed in this part follow the same pattern like with the whole data set, so I will skip

the detailed explanation here.

Before working with all images and corresponding classifications, a control of equal shapes

was performed: Matrix with images is of shape 397 items, 287 height, 334 width with each 3

colors and matrix with classifications is of shape 397 items and 10 classifications.

After this checkpoint, the data was splitted into a training and validation data set, which is the

standard procedure for machine learning procedures.

Multi-label image classification & Model’s architecture

I decided to use multi-label image classification which is not to be mistaken with multi-class

image classification. Here, the main difference is that we speak about multi-class image

classification when just one object exists in the picture which needs to be classified to one of

many categories. However, multi-label image classification shows more than one object or

classification and therefore need to be assigned to multiple categories. Regarding the calculated

probabilities for classifications, multi-class image classifications have probabilities that are

dependent from each other, as when one probability rises the probability of other classes

decreases. In the case of multi-label image classification are those outputs independent from

each other, as more than one result can be correct. When considering the tibia plateau fractures

with the classification from Krause et al. (2016), there is also not just one of the ten segments

the solutions but a combination of those. For this purpose, I started using the sigmoid activation

function as a n-binary classification model which can calculate the probability of each label

individually and independently by creating as many models and corresponding probabilities as

there are classes. To improve the accuracy of this model, the goal is to reduce the

binary_crossentropy loss as much as possible (Sharma, 2019).

Those parameters were implemented within the TensorFlow 2 library which has the purpose

of developing and training Machine Learning models (Abadi et al., 2016). In specific the Keras

deep learning API was used which is a model inspired by biological neural networks of

humans‘ or other animals‘ brains (Chollet et al., 2015).

There are different parameters which can be included and modified within the model’s

architecture, so for example the number of hidden layers, neurons for each layer or the type of

Franziska Ahrend Classification of Tibia Plateau Fractures 04/25/22

 7

activation function. In table 2 (appendix) a selected list and explanations of different elements

is provided. I used different parameters for compiling the model for which there are two

parameters necessary: optimizer and loss function. Also, when fitting or training the model I

experienced widely with different architecture structures. To give an example: The batch size

for training the model is the number of used training examples per epoch. In which one single

epoch is one forward and one backward pass of the number of training examples determined

by the batch_size. Whereas smaller numbers here have the advantage of running much faster

and require less memory space. In contrast higher numbers tend to be more accurate in training

performance (Karimanzira et al., 2020). This pattern can be seen in image 5: Karimanzira et al.

(2020) analyzed the learning rate outcome of their specific dataset, with different sizes of batch

(batch = full batch gradient, mini-batch = smaller batch, stochastic = batch size of 1).

Image 5 Batch sizes in comparison (Karimanzira et al., 2020)

I used that information to better understand the general influence of the batch size on the model

and tested different numeric values for this purpose. I also was able to see differences in

performances depending on the batch size and decided to choose a batch size of 64.

Results

When performing the training of the epochs, the training and testing performance’s accuracy

and validated accuracy are computed. Those were not as high as hoped, as they were at about

10% for both types of accuracies with some overfitting towards the training data which is

shown by the graph in the code-submission which compares the loss and the validated loss in

comparison for each epoch. However, when looking how the results are measured, those low

numbers can be explained: We receive per segment of the classification a percentage and all of

those 10 segments’ likelihoods are adding up to 1 (or 100%). Hence, it does not indicate the

specific classification prediction but instead rather gives an indication in which region the

Franziska Ahrend Classification of Tibia Plateau Fractures 04/25/22

 8

fracture probably lays. An example is shown in image 6, in which one can compare the

predictions made by the machine learning model and the actual classification made by a doctor:

We can see that in this specific example the segments with higher percentages are indeed higher

in latero-regions which can be confirmed by the actual result.

Image 6 One computed prediction from validation set; a) image of fracture, b) model’s prediction of
classification, c) actual classification performed by medical doctor

Improving the results

After receiving the first results of this project, my goal was to improve this model in its

performance. Part of those thoughts were related to the model’s architecture, but I also

implemented different modifications on the data itself: Due to the images’ grayscale-colors, I

figured it is unnecessary to use three colors (RGB) so that I converted the images from three to

one layer per image. Furthermore, and more importantly for the performance of the model, I

added information from the originally provided table, in specific the note about in which knee

the fracture appeared. As left and right knees are mirrored, the classifications are also mirrored.

Hence, my solution for this issue was to flip images of the left knee (in data frame noted with

‘li’ which stands for ‘links’/left), so that for example the classification ALL is always on the

upper left corner of the knee and not just on the right knee and otherwise on the upper right

corner. I figured that this additional consideration with the given data could improve the model.

With this modification of the input data, I was able to increase the training’s accuracy by more

than 5%; however, the validation accuracy and loss resulting from the results of the testing (or

validation data set) was not improved.

F1 Score

After my supervisor’s suggestion of including a so-called f1 score in my model, I directly tried

to implement it. The F1 score is a parameter for statistical analysis for specifically binary

classifications and performs a measurement of accuracy of the test and includes true positives

as well as false positives and negatives in its formula. It shows the harmonic mean of both,

precision, and recall. The result of this score after applying it, was unfortunately zero (not

a) b) c)

Franziska Ahrend Classification of Tibia Plateau Fractures 04/25/22

 9

exactly zero though due to problem with dividing by zero) for both the training and validation

dataset.

Discussion

During this project, I realized different points in which it could be improved with the goal of

increasing the performance. There are different topics that might have made it difficult for the

machine learning algorithm to properly identify pattern within those images. In many cases the

whole leg was not present in the cropped image, which might influence the range of learning

from swelling in soft tissue. Furthermore, some images had a blue line crossing the CT image

which is originally used for doctors to make notes or mark specific areas. However, I believe

the two biggest problems with the images were the quantity of data as well as the location of

the cut. On the one hand, the quantity of the image that were in total at roughly 400 images

might just not be enough. There exist different techniques to reduce the negative impact on a

lack of data, which however will be discussed later together with the other main problem of

the data. On the other hand, if the axial image cut was performed at a location superior (higher)

or inferior (lower) than the actual location of the fracture(s), then a correct classification might

even be impossible. In many cases, personally, I was not able to confirm the classification made

by the doctor just by analyzing the axial images and had to take the anterior images to hand.

As those images are also available to me, taking both those images for analyzation might

already improve the learning rate of the model significantly. If the goal of achieving

classifications just by the axial images remains, then acquiring multiple axial cuts from those

knees could enhance the classification performance. Those could be additionally a solution for

the low quantity of the data as it results to more images with axial view. Combined with this

also synthetic data could be generated by techniques like the Synthetic Minority Over-sampling

Technique (SMOTE) to generate modifications of the real data (Gonfalonieri).

Even though, I have read and experimented already a lot on the

model’s architecture, I believe it could still be improved in some

ways due to the high quantity of possible combinations of

different parameters. Also, I would like to optimize the

integration of the F1 score in the results’ outputs so that I receive

more information regarding the precision and recall of the

model.

As I am planning to work a couple of more weeks on this project,

I will first take some simpler classification model to hand, such

as the one by Luo et al. (2010) which is shown in image 7. Due
Image 7 Three-column fixation (Luo et
al., 2010)

Franziska Ahrend Classification of Tibia Plateau Fractures 04/25/22

 10

to just three classes instead of the ten of Krause et al. (2016), I hope to enhance the accuracy

of the model by reducing issues of overfitting and regain new information about possible

enhancement options with the available data.

It would be great to eventually automate classifications of tibia plateau fractures with machine

learning models and connect those results with advice how to perform the surgery. Combined

with this goal, it could also relax the doctor’s daily work to execute an automated medical

summary and surgery report. For this, not only the image classification model needs to be

enhanced in its accuracy, but also software needs to be written to create a user-friendly interface

for entering new CT images. It would be ideal to get feedback from the doctor if the

classification was successful or where mistakes could be, so that the classification model can

be further trained. This however can only be implemented if (I) the accuracy is optimized, (II)

patient data security is ensured, and (III) interactions between doctor and software is

guaranteed to prevent wrong interpretations and evaluations (Ghassemi et al., 2020).

Franziska Ahrend Classification of Tibia Plateau Fractures 04/25/22

 11

References:

Abadi, M. et al. (2016). Tensorflow: A system for large-scale machine learning. In 12th
Symposium on Operating Systems Design and Implementation. 16, 265–283.

Chollet, F. et al. (2015). Keras. https://github.com/fchollet/keras.
Ghassemi, M., Naumann, T., Schulam, P., Beam, A.L., Chen, I.Y., and Ranganath, R. (2020).

A Review of Challenges and Opportunities in Machine Learning for Health. AMIA Jt
Summits Transl Sci Proc. 2020, 191–200. .

Gonfalonieri, A. 5 Ways to Deal with the Lack of Data in Machine Learning.

Karimanzira, D., Renkewitz, H., Shea, D., and Albiez, J. (2020). Object Detection in Sonar
Images. Electronics 7, 1180.
https://doi.org/https://doi.org/10.3390/electronics9071180.

Korthaus, A., Ballhause, T.M., Kolb, J.-P., Krause, M., Frosch, K.-H., and Hartel, M.J.
(2020). Extended approach to the lateral tibial plateau with central meniscal
subluxation in fracture repair: feasibility and first clinical and radiographic results.
Eur J Trauma Emerg Surg 46, 1221–1226. https://doi.org/10.1007/s00068-020-01467-
1.

Krause, M., Preiss, A., Müller, G., Madert, J., Fehske, K., Neumann, M.V., Domnick, C.,
Raschke, M., Südkamp, N., and Frosch, K.-H. (2016). Intra-articular tibial plateau
fracture characteristics according to the “Ten segment classification.” Injury 47,
2551–2557. https://doi.org/doi: 10.1016/j.injury.2016.09.014.

Luo, C.F., Sun, H., Zhang, B., and Zeng, B.F. (2010). Three-column fixation for complex
tibial plateau fractures. Journal of Orthopaedic Trauma 24, 683–692.
https://doi.org/https://doi.org/10.1097/BOT.0b013e3181d436f3.

Schröter, S., and Schreiner, A.J. (2020). Klassifikationen der Tibiaplateaufraktur. 2, 67–75.
https://doi.org/10.1007/s43205-020-00037-0.

Sharma, P. (2019). Build your First Multi-Label Image Classification Model in Python.

Walters, R. (2017). Getting Started with Python and MongoDB.

Franziska Ahrend Classification of Tibia Plateau Fractures 04/25/22

 12

Appendix
Table 2 List of selected elements of model's architecture and parameters for the implemented machine
learning model

Keras deep learning API, implementing biological neuronal networks
TensorFlow2 Library for developing and training machine learning models
train_test_split Separates full dataset (with input data x and output data y) to training

and validation set: X_train, X_test, y_train, y_test
Parameters are, among others:

- x and y as input and output, respectively
- random_state=42 à random separation
- test_size: size of the validation/test dataset

Sequential()-Model Model = Sequential, one layer to the next, not drawback
Conv2D Small window of kernel_size moving over the images: each one of

them new Neuronal Network à Categorizations
filter Number of windows
kernel_size Size of window (x-/y-cordinates: pixels)
activation Parameter for after performing the convolution to

determine which neurons to activate and which not to
MaxPooling2D Layer that brings together (pools) to Neural Network both in

pool_size Window size with height and width (tuple)
Dropout Against overfitting, downsamples the input
Flatten To 1D array
Dense Reduces number of nodes in layer
Optimizers Changes attributes to reduce losses, attributes can be weights or

learning rates, required argument for compiling the model,
instantiation either by initializing it beforehand or by its string
identifier within the model.compile()
adam Stochastic gradient descent method: adaptive

estimation
Advantage among others in little memory requirement

SGD Gradient descent optimizer, iterative method for
optimization with smoothness properties

loss Function for compiling that regulates the quantity to minimize the
data while training
Binary
crossentropy

probabilistic losses between true labels and predicted
labels, for binary (0/1) classification

categorical
crossentropy

probabilistic losses between labels and predictions,
for two or more label classes

epochs one forward and one backward pass of the number of training
examples determined by the batch_size

Batch size number of used training examples per epoch
Val_accuracy Accuracy from validation/testing dataset
Accuracy Accuracy from training dataset
Loss Value of loss-function resulting from the training dataset
Val_loss Value of loss-function resulting from the validation dataset

